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Combined solitary wave solutions for the inhomogeneous higher-order nonlinear
Schrddinger equation
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We consider the inhomogeneous higher-order nonlinear Schrédinger equation and explicitly present exact
combined solitary wave solutions that can describe the simultaneous propagation of bright and dark solitary
waves in a combined form in inhomogeneous fiber media or in optical communication links with distributed
parameters. Furthermore, we analyze the features of the solutions, and numerically discuss the stabilities of
these solitary waves under slight violations of the parameter conditions and finite initial perturbations. The
results show that there exist combined solitary wave solutions in an inhomogeneous fiber system, and the
combined solitary wave solutions are stable under slight violations of the parameter conditions and finite initial
perturbations. Finally, the interaction between two neighboring combined solitary waves is numerically
discussed.

DOI: 10.1103/PhysReVvE.71.036616 PACS nuni)erd2.81.Dp, 42.65.Tg, 05.45.Yv

It is well known that the propagation of subpicosecond orwaves in the same expression. Furthermore, we analyze the
femtosecond optical pulse in fibers is described by thdeatures of the solutions, and numerically discuss the stabili-
higher-order nonlinear Schroding@dNLS) equation includ-  ties of these solitary waves under slight violations of the
ing not only the group velocity dispersiagVD) and self-  parameter conditions and finite initial perturbations. These
phase-modulatioliSPM), but also various higher-order ef- results are useful in design of fiber optic amplifiers and in
fects, such as third-order dispersi6rOD), self-steepening,  study of simultaneous propagation of bright and dark soliton-
and self-frequency shiftl-3]. It has been extensively stud- |ike pulses in femtosecond fiber laser systems or in optical

ied by many authors and some types of exact solitons ogommunication links with distributed dispersion and nonlin-
solitary wave solutions have been obtaingd-14]. It is earity management.

worth noting that these investigations of optical solitons or 1y governing envelope wave equation for femtosecond

solitary waves have been focused mainly on homogeneousyica| puise propagation in inhomogeneous fiber takes the
fibers. However, in realistic fiber transmission lines, no f'berform [29]

is homogeneous due to long distance communication and

manufacturing problems. Recently, studies of the propaga-

tion of optical pulses in inhomogeneous fibers, which is de- g, =ia,(2)q, + i @x(2)|ql2q + as(2) 0 + @a(2)(|a29);
scribed by the inhomogeneous nonlinear SchrodiidérS) )

type of equation, have attracted more interest. Many authors + as(2)q(|9[%); + (@), 1)
have investigated the INLS equations from different points

?nf d\fjlst\a,\éi (i(re‘r.\gérgg{ilghﬂlysgqggr?i%r:?rg?g]r?(??nn;r:g' é;nedn%mgcwhereq(z,t) represents the complex envelope of the electri-
b ' g '~ "tcal field, z is the normalized propagation distantds the

and obtained some exact soliton solutions for special param- : )
eter relation§15—-28. However, it should be noted that all of hormalized retarded time, and(2), ax(2), a5(2), a,(2), and
these studies are based on the INLS equation, in which th 5(2) are the. d|str.|buted parameters, which are functions of
above-mentioned higher-order effects are omitted. Taking act—te propagation ddltitané}slrela;ed to IGVD’ SPM, TOD, foelft-
count of the higher-order effects influenced by the spatiaP eepening, an € delayed noniinear response efect, re-
variations of the fiber parameters, Papaioanebul. first s_p_ectwely.l"(z) denotes _the amp||f|c_at|on or absorpt_lon c_oef—
investigated the inhomogeneous higher-order nonlineaficient. Study of Eq.(1) is of great interest due to its wide

Schrédinger(IHNLS) equation, which describes femtosec- range of applicfatiops._ Its use is not on_ly restrict.ed to optical
ulse propagation in inhomogeneous fiber media, but also to

ond optical pulse propagation in inhomogeneous fibers, anq1 ¢ d : i )
derived exact bright and dark solitary wave solutions neaf€ core of dispersion-managed solitons and combined-
managed solitons.

the zero dispersion poii29]. To our knowledge, the stud ) . -
P poii2] g y First, we should point out that Eq1) is integrable for

of the IHNLS equation has not been widespread. ! "
In this paper, we consider the IHNLS equation and eXp”C_some special parameter conditions. For example, under the

itly present three types of combined solitary wave solutiondirota condition
that describe the properties of both bright and dark solitary

Bazay, = agay; agt+as=0, (2)
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I'(z)= ag 00~ a’la’z,z, 3)

26{’10’2

one can follow the Ablowitzt al. formalism to construct the

linear eigenvalue problem for bright and dark solitons of Eq.

(1) as follows:

U, =U¥, ¥,=VV, (4)

where¥ =(¥; ¥,)T; hereU andV can be given in the forms

o ) Pzl
U=NJ+P, J= , P=A/—— _
0 -1 2uai\-uq O

(5a)
fe 2
“\c -A/)’
A= dag\3+ 2ian® + T2 g2 + S22 (g, - g +i 2|2,
al Zal 2

a H @
B=1/5,° [4a3q>\2 + gt +ia\ + as(qn * —ZQ|Q|2>
rag “

+ iath] '

C= za2 [_ AnasON + 2 gl — i N
ray

— o . —
- P«03<Qn + fﬁ[qF) + 'MCVlCIt} .
1

(5b)

with

Here the overbar represents the complex conjugatis, a
complex spectral parameter, apd=+1. It is easy to verify
that, whenu=1 and @;a,>0, the compatibility condition
U,-V;+[U,V]=0 gives the IHNLS Eq(1) for bright soli-
tons; while whenu=-1 anda; a, <0, the compatibility con-
dition U,—V;+[U,V]=0 gives the IHNLS Eq(1) for dark
solitons. In general, the Lax pai4) confirms that Eq(1) is
completely integrable under the above conditit@)sand(3),
and is especially used to obtain tNesoliton solution(bright
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=2a,+ a5, ag=a,+as, anda;=a;k?+azk®, which are func-
tions of the normalized distana
We introduce an ansatz similar to that of Rgfk2,13

AzY) =1B(2) + N(tanK 7(2)[t - x(2)]}
+ip(z)secHn(2)[t - x(2)]}, (7
where 7(z) and x(z) are the pulse width and the shift of the
inverse group velocity, respectively. Substituting the ansatz

(7) into Eq. (6) and equating the coefficients of independent
terms, one obtains

7,=0, (8a)

k,=0, (8b)

B, +I'B=0, (8¢)

A, +TA=0, (8d)

p,+Ip=0, (8¢)

pl2a077" - a,(p® = \?) + 2858\ 7] = 0, (8f)

N2ap77 = a(p” — \?)] + 2B7lasp’ + ag(p” —1\*)]=0,

(89)

prl6as7’ - (as+ag)(p® ~N\?)]=0, (8h)

A7[6azn” — (as +ag) (p* ~\H)] =0, (8i)

a4B(3p” = \?) + N1 Bagr + 8y — a5(B” + 2p* — \?)

+ag(B+\°) = x,1=0, (8))
2a4BNp + prlBagy’ +ay - as(B + p?)

—ag(BP+p” = 20%) - x,1=0, (8K)

N2a,777 — ay(B% + p?) + a7 + Q]

+2B7lasp® + ag(p? = \9)] =0, (8l)

plagn? = a,(3B% + p?) +a; + Q]+ 2B\pn(as - ag) = 0,

or dark soliton solutionby means of the inverse-scattering
transform method. We could not yet obtain the Lax pair of
Eq. (1) for combined solitary waves in spite of making great
efforts to search for it. However, E{L) is solvable for com-
bined solitary waves under three sets of special parameter
conditions as we show below.

(8m)

Blay(B%+ 3p?) — a7 — Q] + Ay 2azn” + a; — as(B% + p?)
+ag(B%+p%) = x1=0. (8n)

Now we proceed with the analysis of E@.) by separat-
ing g(z,t) into the complex envelope functioh(z,t) and the
phase shift ¢(z,t)=k(2)t+Q(z) according to q(z,t)
=A(z,t)exdie(z,t)]. Substituting the expression into EQ)
and removing the exponential term, we can rewrite Egas

A, +iay A+ oAy — i gy + aylAlPA — iag AlPA ~ iaGAZA:
- (a;+ @)A+IA=0, (6)

Where a1:2a1k+ 3a3k2, a2:af1+ 3a3k, a4:a2+ a'4k, a5

From Egs.(88—8n), one can see that when the gain and/or
loss distributed function'=0, the system parameters
ay,ap,a3,a4, a5, and the solitary wave parameters
7,K,B,\,p,x, Q) are independent of, these 14 equations
can be reduced to nine equations, and the corresponding re-
sults agree with Ref.12], in which three types of combined
solitary wave solutions for the HNLS equation with constant
coefficients have been discussed in detail. Also, in the special
case of3=\=0 or p=0, Egs.(8a—(8n) are reduced to seven

or nine equations, and one can obtain the corresponding
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bright or dark solitary wave solution for the IHNLS equa- z z

tion, which has been obtained recently in R¢&90,31]. No- x(2) = 2kcf ay(s)ds + (3KZ - ﬂg)f az(s)ds

tice that, asas=a,=as=0, Eq.(1) can reduce to the INLS 0 0

equation and then the 14 equations mentioned above are not NG s

compatible, which means that it is impossible that such a —7\0J0 ay(s)ex —ZJO I'(§dé |ds, (18)

combined solitary wave solutidi¥) could exist for the INLS
equation. The result is similar to that of the NLS equation
with constant coefficientgl2]. o NG
Now we continue the analysis of Eq&a—(8n). From Q@) =-k . ay(s)ds — ke o a(s)ds.
Egs.(8a—8e) one can obtain

(19

From Eq.(16) one can see that system parametey(g) and
7= 1, (9)  a,(2), and the gain and/or loss distributed functidfz) must
satisfy
z
[as(2)as(2)lexd - 2 f I'(s)ds] = const
0
z except foraza,(pi—\3) >0, since, is a constant. In this
B(2) = Bo exp _f I(s)ds (11 sjtuation, the solutiori14) describes a brightlike or darklike
- solitary wave(depending on the sign of the factpf—\3)
_ ; with a variable platform\g exd - [3I'(s)ds]. We note that the
~ le“( d (12) time shift x(z) and the group velocity/(z)=dy/dz of the
0 SIHS solitary wave are dependent anwhich leads to a change of
) the center position of the solitary wave along the propagation
-, q direction of the fiber, and means that we may design a fiber
p(2) = po X _J system to control the time shift and the velocity of the soli-

K=k, (10)

0

NZ) =N exp

T(s)ds (13 tary wave. In order to understand the evolution of the solu-
tion (14), let us consider a soliton management system simi-

where 7, andk; are arbitrary constants, ang), Ao, andp, lar to that of Ref[23], where the system parameters are of

are integral constants related to the initial pulse injectionthe forms

respectively. From Eq911)—(13), one can see clearly that

0

the amplitude of the pulse is not a constant due to the pres- a,(2) = eyexploz)codg2), (209
ence ofl'(z), and increases or decreases along the propaga-

tion direction of the fiber depending on the sign Iofz). @,(2) = aycodg2), (20b)
Equations(9) and (10) imply that the pulse width and the

wave number remain constant during propagation along the a3(2) = azexploz)codg2), (200
fiber. For Eqs(8f)—(8n), similarly to Ref.[12], there are the

following three cases. @4(2) = agc0dg2), (200)

(i) a1/3az=ay/ ay=const, ay+2a5=0, and I'=(xja,,
-y ,a5) [ 2a; 5. In this case, the solutiofY) can be written  wherea,, a3, ando are parameters related to the GVD and
as TOD, and ayy and a4 denote the nonlinearity and self-
steepening, respectively. is related to the variation period
A(zt) =\(2tanHn [t — x(2) ]} + ip(2)sech nlt - x(2)]}, of the fiber parameters. In this situation, the gain and/or loss
(14) distributed functionI'(z) is of the constant forml'(z)=
—a/2, which corresponds to a dispersion decreasing fiber for

and its intensity is given by 0<0. Figure 1 presents the evolution plots of the solution
(14) for different signs ofp3—\3 in this system witho<0.
|A2= (A2 + (p2 - No)secK{7n [t - x(2)]}) From it one can clearly see that the intensity of the solitary
2 wave decreases whern< 0, and the time shift and the group
Xexp[— ZJ F(g)dg} ) (15)  Velocity of the solitary wave are changing while the solitary
0 wave keeps its shape in propagating along the fiber. This is

one of the important properties of solitary waves.
where (") a3=0, ayt a5=0, a2/a4=ConSt, and F=(a1a4’2
-y ,04)1 2124 In this case, the solutiofY) can be written

= 362(2) (p3- )\S)exp[— ZJZF(G)dq} . (1p  Intheform
’ ° Az =iB(2) + A\@tanH 7t - XD} £ i)
xsecH [t - x(2]1}, (21)
k= - ax(2) (17)

a,(2)’ and its intensity is given by
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FIG. 1. The evolution plots of the combined solitary wave so-
lution (14) for (a) a brightlike andb) a darklike solitary wave in the FIG. 2. The evolution plots of the combined solitary wave so-
system(20) with parameters as followsr=—-0.07,g=1, ay=1, lution (21) for (a) a brightlike andb) a darklike solitary wave in the
a3p=-0.02;(a) a19=0.5, pp=1, \p=0.5, and(b) a;5=—0.5,\p=1, system(20) with parameters as followsr=-0.06,g=1, ay,=1,
p0:0.5. a30:0, 0/40:_0.1; (a) a1020.5, )\021, BO:l and (b) a102—0.5,
}\0:1, Boz_l.

|A2= (B5+ N5+ 285\ 5sec ndt — x(2)]})

z —_ 2 Za eyl o N
xexp[—zf r(g)dgl, (22) O(2)= kcfo 1(s)dg+(,30+>\o)Jo[ o(s) + keag(s)]

0

Xexp{— ng F(g)df} ds. (26)
where 0

Similarly to the casei), we can see from Eq$23) and(24)
a(2) z that the parameters,(z), a4(z), and the gain and/or loss dis-
Ne=— 4(2) NoBo exp[— Zf F(;)dg], (23)  tributed functionl’(z) must satisfy
ag 0 z
[as(2) a1 (2) Jlexd -2 f I'(s)ds] =const
0
2 since 7. and k. are constants. In this case, the soluti@d)
__®2 _ a@ ., xn — ZJ I'(s)ds (24)  presents a brightlike or darklike solitary wave depending on
ay2) 22 ° 0 ' the sign of\B,. However, unlike the casg), the solution
(21) does not depend on special features of medium intensity
and is dependent only on the initial pulse. This feature indi-
2 qu(s) () z cates that a bright and dark solitary wave may combine to-
x(2)=- zf 21992 g - (B+ )\g)f ay(s) gether under certain conditions and propagate simulta-
o as) 0 neously in an inhomogeneous fiber in a combined form.

Figure 2 presents the evolution plots of the solutiafh) for

Xexp{— zf F(f)dg} ds, (25)  different signs of\yf, in the systen(20).
0 (i) o= a3=3ay+2a5=0 and Wla,, ay]= oy ;04— aray,
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15  -10 5
(c) Time t

FIG. 3. The evolution plots of the combined solitary wave soluti@8) for (a) a brightlike, (b) a darklike, andc) a W-shape solitary
wave in the systert20) with parameters as follows:=—0.05,9=1, a10=0, ap0=1, a30=0, a40=0.1;(a) pp=1, Bo=1, (b) pp=—1, Bp=1, and

(©) po=—(1+12), Bp=1.

=0. In this case, the solutiofY) can be written as

A(zY) =iB(2) + N(2tanH 5t - x(2)]}
+ip(z)secH [t - x(2]}, (27)
and its intensity is given by
A2 = (85 + M5 + 2Boposectindt - x(2) 1}

z

+(p§ = Ny)sech{nt - x(2]Pexfd- 2 f I'(s)ds],

0

(28)
where
_ [ax(2) + keas(2)]1By
= @ * a2, | 29
Po=2B5+ 5, (30)
x(2) = const, (31

Q@ =(B5+\) f [aa(s) + kca4(€)]exp{- 2 f F(f)dﬁ} ds.
0 0

(32

Similarly, Eq. (29) requires that[ay(z)+k.as(2)]/[as(2)
+as5(2)] is a constant. The combined solitary wa2g) may

then the solution27) can reduce the envelope function of
the electrical field to the following form:

q(z,t) ={iB(2) +ip(z)sechn(t - Xc)]}eXD[‘ i(ft + Qc>:| ,
4
(33

and its intensity is given by

012 = {85+ pisechl 7.t — xo) 1+ 2Bopo sechinu(t — xo) I}

xexp[—ZfZF(;)dq}, (34
0

wherey. and (). are arbitrary constants. The intensity of the
solitary wave (33) takes different shapes under different
pulse parameters. WheByp,>0, the solution(33) repre-
sents a brightlike solitary wave, and whghp,<0 and
lpol <|Bo|, the solution(33) represents a darklike solitary
wave, as shown in Figs.(8 and 3b), respectively. How-
ever, whengByp,<<0 and|pg| >y, the solution(33) repre-
sents a W-shaped solitary wave, as shown Fig). 3t is
worth noting that, unlike the previous two cases, the solitary
velocity does not change and there is only a changeless time
shift in propagation due to constagt. In particular, when
xc=Q.=0 andl'(z) =0, the solution(33) is in agreement with
the one of Ref[12]. This means that this type of combined
solitary wave has a more general form than the earlier report
[12].

We have investigated the general character of the com-

be used in some dispersion compensation systems and lad@ned solitary wave solution from the soliton management

systems, etc. Here we consider the special case=@f and

concept by considering the systef20). In practical fiber

036616-5



YANG et al. PHYSICAL REVIEW E 71, 036616(2005

100
1.0 >
4 5
2z kS
w
é 0.5
0.0 (®)
15 10 5 0 § 10 15
Time T
FIG. 4. The evolution plot of the combined solitary wave solu-
tion (14) under the strict constraint conditiori86) and (37) with
parameters as follows;=¢3=0.05, e,=¢4=0.1, g=0.5, a;(=0.5,
azozl, a3p0= _0.01,)\0:0.3, pozl. ] 1.0
100
communication, however, it is difficult to produce an ideal z
homogeneous fiber system due to manufacturing imperfec: 0/% 50 05 §
tions. If the inhomogeneity is relatively small, one may as- X, =
sume that the fiber parameters simply fluctuate in a sinu- < -
: . . 0 0.0
soidal form around the values of the ideal fiber parameters. 15 -0 £ 0 5 10 15
Therefore, in the following, we will consider a practical in- (b) Time T
homogeneous fiber system, where the fiber parameters are of
the forms FIG. 5. The numerical evolution of the combined solitary wave
(14) with \g=0.3,pg=1 in the systent35) under slight violations of
a1(2) = ayd 1 +&45in(g2)], (359 the parameter condition$a) «;,=0.485, the other parameters the
same as in Fig. 4(b) £,=0.05,£,=0.09,£3=0.0475,6,=0.1, asg
ax(2) = a1 +£,5iN(g2)], (35h) '::.—0.26,a50:0.027,I‘(z):O, the other parameters the same as in
ig. 4.
a3(2) = az1 +e5sin(g2)], (350 figures. It can be seen from Fig. 4 that the intensity and
platform of the solitary wave vary with propagation distance
ay(2) = aud 1 +e45in(g2)], (35d)  sincel'(z) # const, while the pulse width stays constant as it

where ayo, ax @sy and ag are ideal fiber parameters, and propagates along the fiper. It should be noted that the above
gj, j=1,2,3,4, arsmall quantities that characterize the am_sollt.ary wave solution is based on the corresponding con-
plitudes of fluctuations. In order to understand the influenceg1 tr:%r,lt iﬁzdig'ggﬁﬁféran;é?eg rhslcgnSrfrf:?lhérgﬁaggfngfzm_
of such small fluctuations of the fiber parameters on the com- 9 P P

bined solitary wave, here we take the céigeas an example eters. In real applications, however, it may be difficult to
to discuss the evolution of the combined solitary wéle In produce such exact balances. Therefore, a study for the per-

this situation, there exists an exact combined solitary Wav%‘grbed constraint condition¢36) and (37). IS necessary. In
igs. 5a) and Jb), we present the numerical evolution of the

solution (14) with N(2)=\o\[1+e1siN(g2)]/[1+828iN92]  combined solitary wave solutiofld) under two different
and p(2)=pg\[1+e; sinN(@2)]/[1+e, sin(g2)] under the con- slight violations of the constraint condition$a) 3aypasg
straint conditions =0.97w9a40 @and the other conditions do not chande); ¢,
=0.9%3, 0.9Xe,=g4, 0.9X ay+2a5=0, I'(2)=0, and the
condition 3wyqa39= a1gasg does not change. From Fig. 5 we
(36)  can see that the profiles of the solitary wave do not change
except for some small oscillations on one side of the plat-
form. Notice that the intensity and platform are not variable
g(e, - £1)co4g2) in Fig. 5(b) due to the perturbed conditidi(z)=0. By com-
(37) paring Fig. %a) with 5(b), we find that the condition
3aypazp=aqoag has a stronger influence on the solitary
Figure 4 shows the evolution plot of the combined solitarywave propagation than the others.
wave solution(14) under these strict constraint conditions. It In order to analyze the stability of these solitary wave
should be pointed out that, for convenience, the transformasolutions with respect to finite initial perturbations, we still
tion of the time coordinate T=t-[2K [3a1(s)ds+(3k?  take the casdi) as an example to perform two types of
- 79 [3as(s)ds] is used in Fig. 4 as well as the following numerical experiments for the systd86). First, we perturb

Bapoaz0= 10ts0, €1= €3, €27 €4 oyt 2a5=0,

and

2 e, singI[1 +e, singa]
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Time T

FIG. 7. The interaction scenario of two neighboring solitary
waves(38) in the systen{35) when the initial separation is equal to
7. The adopted parameters are the same as in Fig. 4.

the interaction between two neighboring solitary waves be-
comes serious and repulsion occurs. This particular property
might come from the combination of bright and dark solitary
waves. Also, by a lot of numerical simulations, we find that
the separation of the neighboring combined solitary waves in
Eq. (38) is smaller than that of the pure bright or dark soli-
FIG. 6. The numerical evolution dfa) an initial pulse whose tons'. Therefore, we m.ay infer that the Combined tr‘.”‘“smission
amplitude is 10% smaller than the theoretical prediction, i.e., O.S;ggg\rl'gehrt] ‘;:‘g r?;éi;glrlitr?grys\glﬁ\;; vc\:/g\r:erse?é”g(t)ree elr)l(if}tct:%?s
is an advantage in improving the information bit rate in
ultrahigh-speed optical telecommunication.
the amplitude(10%) in the initial distribution. Second, we anénp(:rcéggﬁtse:gnt'h\;\éee r;%gslnc;eig?naéﬁ‘deéhgc:lli}l;\lrbswz(\:‘/zagglz_
i?d Wh'tet nOISi tTO in C;mtlal _P#Ise[)\o tar_1l’(77ct) _ tions in expli(_:it forms for th_e wave propagation ir_1 an inho-
po Seci7c )]eXF‘(' C_) randortt). € numerical re mogeneous fiber system using the complex amplitude ansatz
sults are shown in Figs.(& and &b), respectively. The re- o0 The results show that there exist combined solitary
sults reveal that the combined solitary wave can propagate Mave solutions in an inhomogeneous fiber system. This is
a stable way under finite initial perturbations, such as ampliysefy| in the design of fiber optic amplifiers and in the study
tude and \_/\{h|te noise. . . of simultaneous propagation of bright and dark solitonlike
_In ad(.j't'on’ we consider _the interaction betW‘?e” tWopulses in femtosecond fiber laser systems or in communica-
neighboring solitary wavesid) in the systen{35). The input 45, jinks with distributed dispersion and nonlinearity man-

(b) the exact solution under the perturbation of white noise in th
system(35) with the same parameters as in Fig. 4.

pulse is of the form agement. Also, we have discussed the stability of the com-
q(0,t) ={\o tanH 75(t + to/2)] + ipy sechi 74t + to/2) ]} bined solitary waves under slight violations of the parameter

. conditions and finite initial perturbations. The results show

xexpliket) (383 that the combined waves are still stable under slight viola-

as -0 <t<0, and tions of the parameter conditions and finite initial perturba-
i tions, such as amplitude and white noise. Finally, we have

q(0,t) ={= Ao tant n.(t = to/2)] + ipy sech n.(t - to/2) ]} numerically investigated the interaction between two neigh-

x explikct) (38b) boring solitary waves. The results imply that the combined

) o . transmission of bright and dark solitary waves can restrict
as O<t< +o. Herety is the initial separation between two the interaction between neighboring solitary waves to some
neighboring solitary waves. Figure 7 presents the interactiogytent. This is an advantage in improving the information bit
scenario of two neighboring solitary wave88) with the  rate in ultrahigh-speed optical telecommunication.
initial separatiorty=7, where the parameters adopted are the
same as in Fig. 4. From it one can clearly see that the two This work is supported by the National Natural Science
solitary waves hardly interact and the separation stays corfFoundation of China Grants No. 60244006 and No.
stant while propagating 500 dispersion lengths along the fi60477026, and the Provincial Overseas Scholar Foundation
ber. However, when the initial separation decreases furtheqf Shanxi.
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